吴啸

来源:bat365官网登录入口
发布时间:
2020-02-15
浏览量:

教师姓名

吴啸

学科

材料科学与工程

联系方式

电话:18805016393

E-mailwuxiao@fzu.edu.cn

个人主页:www.researchgate.net/profile/Xiao_Wu3

个人简历

2016.4至今,bet356官网手机appbat365官网登录入口:旗山学者,副教授

2011.9-2016.4,香港理工大学:博士、助理研究员、博士后

2009.8-2011.6,中科院上海硅酸盐研究所:科研助理

2004.9-2011.6,苏州大学:学士、硕士

教学情况

讲授《材料化学》、《材料制备与加工》、《新型陶瓷材料及商业应用》、《博士英语》等课程。教学成果:曾获全国高校无机非金属材料青年教师讲课比赛一等奖、福建省高校青教赛工科组二等奖、bet356官网手机app青年教师“最佳一节课”教学竞赛理工科组一等奖。

指导学生

2位硕士生获福建省优秀硕士学位论文,5位硕士生获bet356官网手机app优秀硕士学位论文,6位硕士生获研究生国家奖学金。

研究领域

-电功能陶瓷、透明陶瓷、储能材料、压电催化材料等。

科研项目

主持国家自然科学基金青年项目、福建省自然科学基金面上项目等。

论著成果

Nat. Commun., Laser Photonics   Rev., Small, Acta Mater., npj Comput. Mater., Chem. Eng. J., Adv. Opt.   Mater., J. Adv. Ceram., J. Mater. Chem. A, ACS Appl. Mater. Interfaces, J. Materiomics, J. Mater. Chem. C, J. Am. Ceram.   Soc., J. Eur. Ceram. Soc., J.   Enviro. Manage.,   Chemosphere, Dalton Trans., Ceram. Inter., Nanoscale, Appl. Phys. Lett., J.   Appl. Phys., J. Alloy. Compd., J. Lumin.等各类国内外期刊发表SCI学术论文130余篇,其中第一作者/通讯作者60余篇。授权中国发明专利7项。

近年来主要一作或通讯作者论文如下:

(1)  Superior Energy Storage   Capability and Fluorescence Negative Thermal Expansion of NaNbO3-Based   Transparent Ceramics by Synergistic Optimization, Small (2024).

(2)  Phase transition monitoring and   temperature sensing via FIR technology in Bi/Sm-codoped KNN transparent   ceramics, J. Am. Ceram. Soc., 107(3), 1648-1656 (2024).

(3)  Dy/Sr-codoped (K0.5Na0.5)NbO3   multifunctional transparent-ferroelectric ceramics with adjustable   white-light emission, J. Am. Ceram. Soc., 107(2), 1137-1147   (2024).

(4)  An interpretable machine learning   strategy for pursuing high piezoelectric coefficients in (K0.5Na0.5)NbO3-based   ceramics, npj Comput. Mater., 9, 229 (2023).

(5)  KNN-based optical temperature   sensing ceramics integrating negative thermal quenching and photochromic   self-recovery behavior,   J. Lumin.,   263, 120141 (2023).

(6)  A facile method for   access to high efficient piezo-photocatalytic synergy of Ba0.85Sr0.15TiO3   through tuning grain size, Curie temperature and energy band gap, J. Alloy.   Compd.,   967, 171710 (2023).

(7)  Bi0.5Na0.5TiO3/ZnO   Z-scheme heterojunction for piezo-photocatalytic water remediation:   Mechanical energy harvesting and energy band configuration, Chemosphere,   338, 139548 (2023).

(8)  Machine learning accelerated   discovery of high transmittance in (K0.5Na0.5)NbO3-based   ceramics, J. Mater. Inf., 3:13 (2023).

(9)  Enhanced photocurrent in   ferroelectric KNNS-BNN materials via temperature modulation, ACS Appl. Electron. Mater., 5, 2876-2884   (2023).

(10)   How to realize   ultrahigh photochromic performance for real-time optical recording in   transparent ceramics, ACS Appl. Mater. Interfaces, 15(13), 16828-16841 (2023).

(11)   Developing "smart   windows" for optical storage and temperature sensing based on KNN   transparent ceramics,   J. Eur. Ceram. Soc., 43(10), 4408-4418 (2023).

(12)   Efficient photochromic   self-recovery behavior in Tm/Yb co-doped K0.5Na0.5NbO3   thick films, Ceram. Inter., 49(3), 4074-4081 (2023).

(13)   Signally   enhanced piezo-photocatalysis of Bi0.5Na0.5TiO3/MWCNTs   composite for degradation of rhodamine B, Chemosphere 308   (2022) 136596.

(14)   K0.5Na0.5NbO3-based photochromic   transparent ceramics for high-security dynamic anti-counterfeiting and   optical storage applications, J. Lumin.,   252, (2022) 119345.

(15)   Enhanced piezo-photocatalysis in Bi0.5Na0.5TiO3@Ag   composite to efficiently degrade multiple organic pollutants, J. Enviro. Manage., 323 (2022) 116186.

(16)   Tailoring   micro-structure of eco-friendly temperature-insensitive transparent ceramics   achieving superior piezoelectricity, Acta Mater., 235 (2022)   118061.

(17)   Simultaneously   achieving high performance of energy storage and transparency via A-site   non-stoichiometric defect engineering in KNN-based ceramics, Chem. Eng.   J.,   444, 136538 (2022).

(18)   Achieving   power-dependent fluorescence intensity ratio via enhanced photothermal effect   in rare-earth and CaCu3TiO12 co-doped alkali niobate   ceramics, Ceram. Inter., 48 25431-25438 (2022).

(19)   Self-recoverable   photochromism of tape-casting-derived Er-doped potassium sodium niobate thick   films via sol-gel route, J. Lumin.,   247, 118875 (2022).

(20)   Highly responsive   photochromic behavior with large coloration contrast in Ba/Sm co-doped (K0.5Na0.5)NbO3   transparent ceramics, Ceram. Inter., 48,   8899-18908 (2022).

(21)   Strain and   illumination triggered regulations of up-conversion luminescence in Er-doped   Bi0.5Na0.5TiO3-BaTiO3/Mica   flexible multifunctional thin films, J.   Materiomics,   8, 586-595 (2022).

(22)   Defect management and   multi-mode optoelectronic manipulations via photo-thermochromism in smart   windows, Laser   Photonics Rev.,   2100211 (2021). (高被引)

(23)   Significantly   photo-thermochromic KNN-based “smart window” for sustainable optical data   storage and anti-counterfeiting, Adv. Opt. Mater., 2100580 (2021).

(24)   Trap-induced   self-recoverable photochromism of rare-earth doped sodium niobate translucent   ceramics, Ceram. Inter., 47, 31702-31712 (2021).

(25)   Simultaneously   improved transparency, photochromic contrast and Curie temperature via   rare-earth ion modification in KNN-based ceramics, Inorg.   Chem. Front., 8(8): 2027-2035 (2021).

(26)   High-contrast   photochromic Eu-doped K0.5Na0.5NbO3 ceramics   with prominent pellucidity, Dalton   Trans.,   50(14): 4914-4922 (2021).

(27)   Expedient red emitting   and transparency dual modulation in KNN-based transparent ceramics via   sensitive photothermochromic behavior, ACS Appl. Electron. Mater., 3(3): 1394-1402 (2021).

(28)   Smart white lighting   and multi-mode optical modulations via photochromism in Dy-doped KNN-based   transparent ceramics, J. Am.   Ceram. Soc., 104(2):   903-916 (2021).

(29)   Enhanced   ferro-/piezoelectric properties of tape-casting-derived Er3+-doped   Ba0.85Ca0.15Ti0.9Zr0.1O3   optoelectronic thick films, J. Adv. Ceram., 9(6): 693-702 (2020).

(30)   Reversible multi-mode   modulations of optical behavior in photochromic-translucent Nd-doped K0.5Na0.5NbO3   ceramics, J. Mater. Chem. C, 8, 2343-2352 (2020).

(31)   Effect of dwell time   on cold sintering assisted sintering based highly transparent 0.9K0.5Na0.5NbO3-0.1LiBiO3   ceramics, J. Alloy. Compd.,   826, 154249 (2020).

(32)   In situ boost and   reversible modulation of dual-mode photoluminescence under an electric field   in a tape-casting-based Er-doped K0.5Na0.5NbO3   laminar ceramic, J. Mater. Chem. C, 7, 7885-7892 (2019). (封面论文)

(33)   Reversible modulation   of photoenergy in Sm-doped (K0.5Na0.5)NbO3   transparent ceramics via photochromic behavior, J. Mater.   Chem. A,   7, 19374-19384 (2019).

(34)   Eu-doped K0.5Na0.5NbO3-(Ba,Sr)TiO3:   A novel lead-free luminescent ferroelectric transparent ceramic with   reversible photochromism, J. Adv. Dielect., 9, 1950037 (2019).

(35)   Er3+ and K0.5Na0.5NbO3 modified Ba0.85Ca0.15Ti0.9Zr0.1O3:   Novel translucent ceramics with reversible photochromism, Ceram.   Inter.,   45,   24348-24354 (2019).

(36)   Ho3+-doped   (K, Na)NbO3-based multifunctional transparent ceramics with   superior optical temperature sensing performance, J. Am.   Ceram. Soc., 102, 1249-1258 (2019).

(37)   Effects of   compositional changes on up-conversion photoluminescence and electrical   properties of lead-free Er-doped K0.5Na0.5NbO3-SrTiO3   transparent ceramics, J. Alloy. Compd., 784, 60-67 (2019).

(38)   Composition,   microstructure and electrical properties of K0.5Na0.5NbO3   ceramics fabricated by cold sintering assisted sintering, J. Eur.   Ceram. Soc.,   39, 986-993 (2019).

(39)   Emission color-tunable   and optical temperature sensing properties of Er3+/La3+   co-doped (K0.5Na0.5)NbO3   optoelectronic transparent ceramic, J. Lumin.,   213, 158-163 (2019).

(40)   Outstanding optical   temperature sensitivity and dual-mode temperature-dependent photoluminescence   in Ho3+-doped (K,Na)NbO3-SrTiO3 transparent   ceramics, J. Am.   Ceram. Soc., 102, 4710-4720 (2019).

研究生招生要求:有上进心、责任心,团队协作精神和钻研精神,较强的实验动手能力和英文写作能力。欢迎广大青年学子加盟,共创光-电功能材料的一片天!